A Comparison of Centrality Measures for Graph-Based Keyphrase Extraction

نویسنده

  • Florian Boudin
چکیده

In this paper, we present and compare various centrality measures for graphbased keyphrase extraction. Through experiments carried out on three standard datasets of different languages and domains, we show that simple degree centrality achieve results comparable to the widely used TextRank algorithm, and that closeness centrality obtains the best results on short documents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Keyword and Keyphrase Extraction Using Centrality Measures on Collocation Networks

Keyword and keyphrase extraction is an important problem in natural language processing, with applications ranging from summarization to semantic search to document clustering. Graph-based approaches to keyword and keyphrase extraction avoid the problem of acquiring a large in-domain training corpus by applying variants of PageRank algorithm on a network of words. Although graph-based approache...

متن کامل

A graph-based unsupervised N-gram filtration technique for automatic keyphrase extraction

In this paper, we present a novel N-gram (N> = 1) filtration technique for keyphrase extraction. To filter the sophisticated candidate keyphrases (N-grams), we introduce the combine use of: 1) statistical feature (obtained by using weighted betweenness centrality scores of words, which is generally used to identify the border nodes/edges in community detection techniques); 2) co-location streng...

متن کامل

WikiRank: Improving Keyphrase Extraction Based on Background Knowledge

Keyphrase is an efficient representation of the main idea of documents. While background knowledge can provide valuable information about documents, they are rarely incorporated in keyphrase extraction methods. In this paper, we propose WikiRank, an unsupervised method for keyphrase extraction based on the background knowledge from Wikipedia. Firstly, we construct a semantic graph for the docum...

متن کامل

Unsupervised Keyphrase Extraction with Multipartite Graphs

We propose an unsupervised keyphrase extraction model that encodes topical information within a multipartite graph structure. Our model represents keyphrase candidates and topics in a single graph and exploits their mutually reinforcing relationship to improve candidate ranking. We further introduce a novel mechanism to incorporate keyphrase selection preferences into the model. Experiments con...

متن کامل

TopicRank: Graph-Based Topic Ranking for Keyphrase Extraction

Keyphrase extraction is the task of identifying single or multi-word expressions that represent the main topics of a document. In this paper we present TopicRank, a graph-based keyphrase extraction method that relies on a topical representation of the document. Candidate keyphrases are clustered into topics and used as vertices in a complete graph. A graph-based ranking model is applied to assi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013